Skip to main content

Spanning Tree Protocol

Spanning Tree Protocol (STP) is a Layer 2 protocol that runs on bridges and switches. The specification for STP is IEEE 802.1D. The main purpose of STP is to ensure that you do not create loops when you have redundant paths in your network. Loops are deadly to a network. When too many computers try to send at the same time, overall network performance is affected and can bring all traffic to a near halt. That's why STP is used to solve this issue. 



A bridge looks at the destination address and, based on its understanding of which computers are on which segments, forwards the data on the right path via the correct outgoing port. Network segmentation and bridging can reduce the amount of competition for a network path by half  assuming each segment has the same number of computers. As a result, the network is much less likely to come to a halt. When STP is enabled, each bridge learns which computers are on which segment by sending a first-time message to network segments. Through this process, the bridge discovers the computers' locations and records the details in a table. When subsequent messages are sent, the bridge uses the table to determine which segment to forward them to. Enabling the bridge to learn about the network on its own is known as transparent bridging, a process that eliminates the need for an administrator to set up bridging manually. 

Spanning Tree comes into play by only allowing a singular path to destinations when having multiple (redundant) links such as this. In a STP environment, the switches exchange information among themselves using bridge protocol data units (BPDU) and will then listen in on all ports for this BPDU message. Once a bridge is turned on, it automatically assumes that it is the root bridge in the STP tree. The STP software chooses a root bridge and calculates all paths from the lower bridges back to itself. In the event of hardware failure of a root bridge in the redundant environment, a new root is elected and port paths would be recalculated.

With multiple uplinks, STP is a must in our switched environment to provide multiple redundancies in case one goes down, another link is there to takes it place within a matter of seconds. At this stage in our continuously growing network topology, there’s virtually no way you’ll ever lose the connection to your dedicated server. That is of course you don’t reboot the server itself, then that’ll be your expected momentary loss of connectivity.

Comments

Popular posts from this blog

NVIDIA Tesla V100 - First Tensor Core GPU

  8x NVIDIA Tesla V100 32GB Server As we all know NVIDIA processor are so famous now a days. It give a perfect gaming performance and people used it worldwide. The thing is that it is not only use in personal computer but also at data center, where so many super computer are present for providing services. So, NVIDIA Tesla V100 is a first tensor core GPU. It is especially built to focus on AI, High Performance Computing ( HPC ) and graphics. It is powered by NVIDIA Volta Architecture. It comes with configuration 16 and 32GB and have a performance up to 100 CPUs in single GPU. A single server node with V100 GPUs can replace 60 CPUs nodes. DATA CENTER GPUs Image © NVIDIA NVIDIA V100 for NVLINK  Performance with NVIDIA GPU Boost for double precision is  7.8 teraflops and single precision is 15.7 teraflops. Deep learning performance boost is 125 teraflops. Interconnect bandwidth with bidirectional is 300 GB/s. It have memory capacity of 32/16 GB HBM2 with bandwidth 900GB/s. I...

The Amazing Vantablack Material...!!

Vantablack is a material developed by Surrey NanoSystems in the United Kingdom and is one of the darkest substances known, absorbing up to 99.96% of visible light (at 663 nm if the light is perpendicular to the material).The name is a compound of the acronym VANTA (vertically aligned carbon nanotube arrays) and the color black. Vantablack is not actually a color pigment or a paint, but a coating of carbon nanotubes. These have the property of absorbing incident light almost completely. Against a deep black background, objects coated in Vantablack material seem to disappear, as the perception of spatial depth is lost. This is because the human eye perceives shapes coated in Vantablack to be two-dimensional. IUPAC Name is Activated carbon high density skeleton. Other names are Multiwalled carbon nanotube (MWCNT), Vantablack S-VIS and Vantablack S-IR. It is insoluble in water. When light strikes Vantablack, instead of bouncing off, it becomes trapped and is continually deflected amo...

SCADA Network

So welcome to my blog. In this post I am gonna write about SCADA network. This actually come to my mind because of web show named Mr. Robot. The show is awesome if you love hacking believe me you will enjoy the series. So basically the SCADA ( Supervisory Control and Data Acquisition ) is a control system architecture comprising computers, networked data communications and graphical user interface for high level process supervisory management, while also comprising other peripheral devices like programmable logic controllers and discrete proportional-integral-derivative controllers to interface with process plant or machinery. SCADA networks used for monitoring and controlling the  industry like  telecommunication, water plant, etc. It is one of the most commonly used industrial control system, in spite of concerns about SCADA system being vulnerable to cyberattack.  This network is used for gathering info about the system, transferring that info to central site, alerting...